MAXI-Plume: Massaflæði í sprengigosum - verkefni lokið

Fréttatilkynning verkefnisstjóra

11.7.2024

Sprengigos mynda gosmekki sem eru mjög hættulegir flugvélum og getur gosaskan eyðilagt þotuhreyfla og valdið slysum. Rannsóknarverkefnið MAXI-Plume snérist um skoða mekki frá nýlegum gosum á Íslandi. Helsta markmiðið var að bæta nákvæmni líkana og getu þeirra til að segja til um
útbreiðslu gjósku.

Þessum markmiðum var náð með því að hagnýta gögn úr völdum eldgosum. Gögnin eru úr samtíma vöktun og kortlagningu gjóskulaga og eru þau tengd við líkön og niðurstöður úr tilraunum. Í verkefninu voru að auki rannsökuð tengsl tvístrunarferla kviku við aðstæður í gíg og hvernig vindur í andrúmsloftinu hefur áhrif á gjóskufall og útbreiðslu. Mikilvægasti þátturinn í þessu ferli er kvikuflæðið, hve mikil gjóska berst upp úr gígnum á sekúndu og losun gass samfara gosinu. Gosin í Heklu 1991 og 2000, Eyjafjallajökli 2010 og Grímsvötnum 2004 og 2011 voru rannsökuð sérstaklega. Niðurstöður mælinga voru bornar saman við nokkur einföld gosmakkarlíkön. Í ljós kom að nákvæmari niðurstöður fást með því að nota nokkur líkön saman og gefa hverju og einu tiltekið vægi. Vægi einstakra líkana fer nokkuð eftir því hvaða gögn eru til reiðu í hverju tilviki. Niðurstöður úr MAXI-Plume hafa birst í sjö ritrýndum greinum í alþjóðlegum tímaritum, tvö MS verkefni voru unnin innan verkefnisins og 12 erindi/veggspjöld á ráðstefnum. Niðurstöður MAXI-Plume hafa varpað ljósi á tengsl milli þess hvernig vindur hefur áhrif á hegðun gosmakka. Þær hafa nýst til að endurbæta makkarforritið REFIR sem hannað er til að meta í nær rauntíma magn gosefna í sprengigosum út frá upplýsingum um makkarhæð og vindstyrk. REFIR var upphaflega sniðið að Íslandi en getur nú nýst hvar sem er á Jörðinni. Búið er að setja forritið upp til nýtingar á Ítalíu, Bretlandi, Noregi og Nýja Sjálandi, auk Íslands og er þessi útrás ein af afurðum MAXIPlume.

English:
Volcanic ash plumes formed in explosive eruptions pose a serious threat for aviation and human life. IRF-project MAXI-Plume analysed the dynamics of ash injection by volcanic plumes generated during explosive eruptions in Iceland. The main aim was to improve the accuracy of models predicting ash injection and dispersion in the atmosphere. By integrating monitoring, geological field studies, models and experiments, MAXI-Plume addressed still open questions crucial for understanding plume dynamics: the link between magma fragmentation in the conduit and resulting source conditions, and wind entrainment. Both factors control the evolution of a plume. The most important source parameter is the mass flux at the vent, i.e. the mass of tephra and volcanic gases released per time. Within MAXI-Plume, the mass flux of the most recent explosive Icelandic eruptions of Hekla 1991/2000, Eyjafjallajökull 2010, Grímsvötn 2004/11 was constrained by merging results of measurements on ash deposits with newly developed techniques. These data were then compared with predictions from plume models and lead to the design of novel optimized real-time mass flux forecast strategies. It was found that, instead of relying on a single plume model, the accuracy of mass flux predictions can be considerably increased by combining different plume models via model weight factors. Their optimal choice depends on the type and availability of volcanological and meteorological information for the eruption monitored. The findings from MAXI-Plume contributed to seven peer-reviewed articles, two Master theses and 12 conference proceedings.

Information on how the results will be applied:
The findings from MAXI-Plume contributed significantly to a better understanding of the dependence between plume dynamics on wind entrainment processes. The insights gained by this project lead to the development of a significantly improved software (REFIR v23), which has been designed to monitor eruption source parameters of explosive eruptions in near-real time. While originally designed for monitoring volcanoes in Iceland, REFIR’s flexibility allows operators to use REFIR now to monitor ash plumes anywhere on the planet. The updated version of REFIR that encompasses all findings from MAXI-Plume will be used in at least five institutions around the globe, in Iceland, Italy, UK, Norway and New Zealand. Thus, MAXI-Plume significantly contributed to the enhancement of real-time mass flux assessment in future eruption scenarios.

A list of the project’s outputs:
∙ Dioguardi F. et al. (2020): The impact of eruption source parameter uncertainties on ash
dispersion forecasts during explosive volcanic eruptions. J. Geophys. Res. Atmos. 125 (17),
e2020JD032717. doi: 10.1029/2020JD032717.
∙ Dürig T. et al. (2022): The effect of wind and plume height reconstruction methods on the
accuracy of simple plume models - a second look at the 2010 Eyjafjallajökull eruption. Bull.
Volcanol. 84(3): 33. doi: 10.1007/s00445-022-01541-z
∙ Hochfeld I. et al. (2022): Eruption dynamics of Anak Krakatau volcano (Indonesia) estimated using
photogrammetric methods. Bull. Volcanol. 84(8): 73. doi: 10.1007/s00445-022-01579-z
∙ Pedersen G.B.M. et al. (2022): Volume, effusion rate, and lava transport during the 2021
Fagradalsfjall eruption: Results from near real‐time photogrammetric monitoring. Geophys. Res.
Lett. 49(13) e2021GL097125. doi:10.1029/2021GL097125
∙ Dürig T. et al. (2023): Quantifying the effect of wind on volcanic plumes: implications for plume
modelling. J. Geophys. Res. 128(2): e2022JD037781. doi: 10.1029/2022JD037781
∙ Hjartardóttir A.R. et al.(2023): Pre-existing fractures and eruptive vent openings during the 2021
Fagradalsfjall eruption, Iceland. Bull. Volcanol., 85: 56. doi: 10.1007/s00445-023-01670-z
∙ Dürig T. et al. (2023): Optimizing mass eruption rate estimates by combining simple plume
models. Front. Earth. Sci., 11, doi: 10.3389/feart.2023.1250686
∙ Dürig T. and Dioguardi F. REFIR v20- a Python tool to calculate volcanic eruption source
parameters: https://github.com/BritishGeologicalSurvey/REFIR
∙ Hochfeld, I. (2020): Eruption dynamics of Anak Krakatau volcano (Indonesia) estimated using
photogrammetric Methods. MSc thesis, Institute of Geophysics, University of Hamburg
∙ Kristín Þorsteinsdóttir Sonnentag (2024): Mass eruption rates of the last five Hekla eruptions:
Applying plume models to eruptions of Hekla in 1947, 1970,1980, 1991 and 2000. MSc thesis,
Institute of Earth Sciences, University of Iceland
∙ Dürig, T. (2021): The effect of wind on volcanic ash columns and impact on monitoring strategies
with wind-affected plume models – demonstrated for Eyjafjallajökull 2010. Jarðfræðafélag
Íslands (Geoscience Society of Iceland), Spring conference 12. mars 2021.
∙ Pedersen, G.B.M. et al. (2021): Volume, Discharge Rate and Lava Transport at the Fagradalsfjall
Eruption 2021: Results from Near-Real Time Photogrammetric Monitoring. AGU Fall Conference
2021, V35F-01.
∙ Hjartardóttir A.R. et al. (2022): Eruptive vent openings during the 2021 Fagradalsfjall eruption,
Iceland, and their relationship with pre-existing fractures. EGU General Assembly Conference
Abstracts, EGU22-10330.
∙ Paredes-Mariño J. et al.(2022): Understanding fragmentation mechanism (s) during the 15
January 2022 Hunga Volcano (Tonga) eruption through particle characteristics. EGU General
Assembly Conference Abstracts, EGU 22-13587.
∙ Dürig, T. et al. (2023): Strategies to improve the real-time mass eruption rate prediction quality
of simple and fast plume models. Abstract 351, IAVCEI General Assembly, 30 Jan - 3 Feb, Rotorua,
New Zealand.
∙ Dürig, T. et al. (2023): Induced fuel-coolant interaction: how thermohydraulic explosion
mechanisms work in deep-sea settings and how we can identify them. Abstract 350, IAVCEI
General Assembly, 30 Jan - 3 Feb, Rotorua, New Zealand (invited talk).
∙ Ross P.-S. et al. (2023): Assessing primary magma fragmentation through standardized juvenile
particle studies. Abstract 187, IAVCEI General Assembly, 30 Jan - 3 Feb, Rotorua, New Zealand.
∙ Paredes-Mariño J. et al. (2023): Understanding Characteristics of the volcanic ash from Hunga
Eruption: A tale of extreme fragmentation. Abstract 1226, IAVCEI General Assembly, 30 Jan - 3
Feb, Rotorua, New Zealand.
∙ Hjartardóttir A.R. et al. (2023): The relationship between pre-existing strike-slip faults and
eruptive vent openings during the 2021 Fagradalsfjall eruption, Iceland. Abstract 1033, IAVCEI
General Assembly, 30 Jan - 3 Feb, Rotorua, New Zealand.
∙ Cole, R. et al. (2023): A novel experimental apparatus to investigate flow localisation and thermal
feedbacks during volcanic fissure eruptions. Abstract 1028, IAVCEI General Assembly, 30 Jan - 3
Feb, Rotorua, New Zealand.
∙ Baxter, R.J.M. et al. (2023): Particle Morphology created by high-energy, fuel-coolant
fragmentation (FCI) during Tonga's 2022 Hunga eruption. Abstract 1228, IAVCEI General
Assembly, 30 Jan - 3 Feb, Rotorua, New Zealand.
∙ Murch, A.P. (2023): A record of fragmentation, decompression, and hydration during the
subaqueous 2012 Havre eruption. Abstract 937, IAVCEI General Assembly, 30 Jan - 3 Feb,
Rotorua, New Zealand.

Heiti verkefnis: MAXI-Plume: Massaflæði í sprengigosum/MAXI-Plume: MAss fluX Investigation of ash Plumes
Verkefnisstjóri:
Tobias Christian Duerig, Háskóla Íslands
Tegund styrks: Nýdoktorsstyrkur
Styrktímabil: 2020-2022
Fjárhæð styrks kr. 28.656.000
Tilvísunarnúmer Rannís: 206527









Þetta vefsvæði byggir á Eplica